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NOTICE 

This report was prepared as an account of Government-sponsored 
work. Neither the United States nor the National Aeronautics and 
Space Administration (NASA), nor any person acting on behalf of 
NASA: 

A) Makes any warranty or representation, expressed or implied 
with respect to the accuracy, completeness, or  usefulness of 
the information contained in this report or that the use of any 
information, apparatus, method, or process disclosed in this 
report may not infringe privately-owned rights; o r  

B) Assumes any liabilities with respect to the use of, or  for  
damages resulting from the use of any information, apparatus, 
method or process disclosed in this report. 

As  used above, "person acting on behalf of NASA" includes any 
employee or  contractor of NASA, or  employee of such contractor, 
to this extent that such employee or contractor of NASA, o r  em- 
ployee of such contractor prepares, disseminates, or  provides 
access to, any information pursuant to his employment or contract 
with NASA, or his employment with such contractor. 

Request for copies of this report should be addressed to: 

NASA 
Office of Scientific and Technical Information 
Box 33 
College Park, Md. 20740 
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ABSTRACT 

A weight comparison is made between direct condensing radiators and indirect systems for 

nuclear potassium Rankine systems at a power level of 300 kWe and for meteoroid nonpene- 

tration probabilities of 0.9, 0.99, and 0.999 for five years. The direct condensing radiators 

have a significant weight advantage for all conditions considered. However, consideration 

of startup requirements favor the indirect system and may offset the apparent advantage 

of the direct  condensing system. The use of redundant loops in the indirect system 

provides a means of reducing radiator weight. A study is made to select the optimum 

redundancy arrangement. 
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1. SUMMARY 

This report summarizes the results of the third of three tasks performed by the General 

Electric Company, Missile and Space Division, for the National Aeronautics and Space Ad- 

ministration under contract NASw-1449 - A Study of Radiator Structural and Mechanical 

Requirements. 

The three tasks covered by this study are: 

a. Definition of Spacecraft and Radiator Interrelations 

b. Comparison of Load-Bearing and Non-Load-Bearing Radiators 

c. Comparison of Direct Condensing and Indirect Radiators 

Topical reports on the first two tasks have been issued as NASA CR-72245 and NASA CR - 
72307, respectively. 

The comparison made in this task of the study is for cylindrical beryllium radiators, appli- 

cable to a nuclear potassium Rankine system for  an unmanned interplanetary probe mission, 

launched by a three-stage Saturn V. The power level is assumed to be 2.46 Mwt heat re-  

jected, approximately equivalent to 300 kWe net electrical power. Meteoroid nonpenetration 

probabilities of 0.9, 0.99 and 0.999 fo r  a five-year life are considered. 

The comparison shows that the direct condensing radiator ha: 

over the indirect condensing system; however, the scope of this study did not include the 

effects of startup requirements on the comparison. The weight advantage of the direct con- 

densing system is approximately 70 percent at a probability of 0.9, decreasing to 23 percent 

as the probability increases to 0.999. Consideration of startup requirements, which favor 

the indirect system, may offset the apparent weight advantage of the direct condensing rad- 

iator. An evaluation of startup requirements was beyond the scope of this study. 

The use of redundant loops in the indirect system provides a means of reducing radiator 

weight at the higher survival probabilities. As the degree of redundancy is increased, 

the increme in feed line weight and required area offset the reduction in armor weight. 

significant weight advantage 

An optimum redundancy is therefore determined for each condition of survival probability. 

1-1 



‘t 
The direct condensing radiators considered in this study were designed with the aid of the 

GE Spartan V computer code. The heat transfer and fluid flow relations used in the code 

show excellent correlation with available test data for potassium. Precautions are taken in 

the design of the direct condensing radiator to avoid problems of two-phase flow instability 

and maldi stri bution. 
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2. ASSUMPTIONS AND METHOD OF ANALYSIS 

2.1 POWERPLANT SPECIFICATIONS 

The radiators compared in this study are associated with a nuclear potassium Rankine 

power system used for unmanned missions. The parameters specified by NASA-Lewis, 

listed in Table 2-1, are consistent with the specifications used in the comparison of 

load-bearing and non-load-bearing concepts from the second task of this contract, re- 

ported in Reference 2-1. For simplicity, and for comparison with previous studies, 
,. CC. . P 1. me emciency 01 me @well system was ssiiiiid kj be si& tkizt, the net e!ectricJ ~ C Y X Z  

is 300 kWe. Throughout this report, the power level is referred to by this electrical 

power, rather than by the thermal power rejected by the radiators, 

The pump penalty specified for the indirect system is used to account for the pump 

work in optimizing the radiator design (Table 2-1). The specified value of 25 lb/kWe 

is typical of a potassium Rankine system with a beryllium radiator. Note that the as- 

sumptions used for the systems compared in the previous task of this study lead to 

somewhat higher penalties. However, the magnitude of the penalty is not critical, 

since the pump work has only a secondary effect in determining the optimum radiator 

weight. 

Radiator construction was assumed to consist of beryllium armor and fins and stainless 

steel tubes, headers and feed lines. Assuming an emittance of 0.90, an absorptance of 
2 0.75, and an incident flux of 440 Btu/hr-ft , the effective sink temperature is 52°F. 

At the radiator temperatures of interest in this study, the sink temperature has little 

influence on thermal performance. As heliocentric distance increases during an inter- 

planetary probe mission, the effective sink temperature decreases and becomes even 

less significant. The conservative assumption is made that the powerplant will be 

operated initially at full power in earth orbit so that near-earth incident fluxes are as- 

sumed for the thermal analysis. 

2-1 
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I Three-Stage Saturn V 

TABLE 2-1. SPECIFIED RADIATOR PARAMETERS 

I Three-Stage Saturn V 

Coolant 

Inlet Temperature 

Heat Rejected 

Life 

Pump Efficiency 

Power Penalty 

Meteoroid Nonpenetration 
mob ability 

Launch Vehicle 

DIRECT 

K 

1350' F 

2.46 MWt 

5 years 

0.9 
0.99 
0.999 

INDIRECT 

Nak 

1300°F 

2.46 MWt 

5 years 

2 0% 

25 lb/kWe 

0.9 
0.99 
0.999 

The circuit schematics for the two radiator types being compared are shown in Figure 

The direct condensing radiator eliminates the need for a condenser-heat exchang- 2-1. 

er, and for the pumps in the heat rejection loops of the indirect condensing radiator. 

The weight of these components is included in the comparison. Cycle conditions through 

the turbine and boiler feed jet pumps are  assumed to be the same in both cases. 

The powerplant conditions which were fixed in this study were the fluid turbine exit 

conditions and the fluid temperature to the electromagnetic pump. 

a t  turbine exit was specified to be 1350°F; the value for fluid quality w a s  taken a s  

83.8 percent. The fluid temperature to the EM pump, which is of minimal importance 

to the radiator design and weight, was arbitrarily chosen to be 1100" F. 

Fluid temperature 

I 
1 
II 
1 
1 

2.2 METEOROID CRITERIA 

The meteoroid criteria used to determine armor thickness for the radiators compared 

in this study are  based on the relations derived by Loeffler, Lieblein, and Clough 

(Reference 2-2); these relations are described more fully in Reference 2-1. A s  in the 

analysis presented in Reference 2-1, a damage thickness factor of 1.75 was assumed, 

2 -2 
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which corresponded to a dimple height of 20-percenty and the cratering coefficient for 

beryllium armor was assumed to be 2.28. 

Three values of nonpenetration probability were specified in Table 2-1 to assess the 

sensitivity of the radiator weights to meteoroid criteria. Note in comparing the results 

of this study with previous radiator weight estimates that the meteoroid criteria are 

more severe than those used in the past. Table 2-2 compares the current criteria 

with those used in the Navigator Studies of 1964 (Reference 2-3). The reduction in 

average meteoroid velocity and the increase in meteoroid density have a combined effect 

of decreasing the armor thickness required by 22-percent. However, the longer sur- 

vival time and higher nonpenetration probability, equivalent to an increase in the mean 

time to failure by a factor of 219, have a net effect of increasing the armor thickness 

by a factor of 5.34. 

An advantage of the indirect condensing system is that, for a single set of turboma- 

chinery, multiple heat rejection loops can be used. By providing redundancy in the 

number of independent heat rejection loops, a reduction in the armor thickness re- 

quired can be obtained, which often results in a reduction in radiator weight. 

termine the degree of redundancy resulting in minimum radiator weight, a study of 

redundancy was made for the indirect radiators used in the comparison of this study. 

The results of this study are presented insection 3. The effect of providing redundan- 

cy on the survival probability of the system is determined by solving the binomial 

distribution equation: 

To de- 

e n  
s =  n! Pr (1- P)n-r 

prs (n-r) ! r! 

where: 

S = nonpenetration probability of system 

P = nonpenetration probability of individual loops 

n = number of loops provided 

r = number of loops surviving 
S 
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TABLE 2-2. METEOROID CRITERIA COMPARISON 

Meteoroid Velocity ( k d s e c )  

Meteoroid Density (g/cc) 

Survival Time 

Survival Probability 

Mean Time to Failure (hr) 

Relative Armor Thickness 

NAVIGATOR (1964) 

30 

0.44 

10,000 hr  

0.95 

0.2 x 106 

1 

CURRENT 

20 

0.50 

5Yr  

0.999 

43.8 X 10 

5.34 

6 

Table 2-3 lists typical solutions for a required nonpenetration probability of 0.999. 
As &i f&ds'i;.2~Gn, 3 s h  rejeceoi; Imps prG\<&d &?< sur;+"7d zf fPze 

loops is required to provide full power capacity, the nonpenetration probability re- 

quired of each loop is 0.9918, compared with 0.9998 if  all six are required to survive. 

The armor thickness is computed for the entire system on the basis of 9. Therefore, 

the reduction in armor thickness t that has been obtained by the use of redundancy is: 

t 0.2488 
t 
0 

0.2488 

. = 0.38 

that is, the armor thickness is only 38-percent of that required with no redundancy, 

while the radiator area is greater by 20-percent. The net effect on radiator weight 

may be an increase o r  a decrease, depending on how much of the radiator weight is in 

the armor. 

2.3 SPACECRAFT CONFIGURATION 

The radiators compared in this study, both the direct and indirect condensing types, 

are assumed to be non-deploying, load-bearing types, conical in shape, and fitting 

within a 10-degree half-cone angle. For the direct condensing radiators considered in 
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this study, it was found that the area available on a conical surface of 10-degree half- 

cone angle having a base diameter of 260 inches is less than that required for heat re- 

jection capability. The payload section is therefore assumed to be of the necessary 

length to act as an adapter section. The half-cone angle was chosen on the basis of 

studies reported in Reference 2-4, which showed that the 10-degree angle favors both 

low shield weight and low launch loads. In the comparisons made in this study, how- 

ever, these factors a re  of secondary significance. 

The feed line network for the radiators compared in this study was assumed to be as 

shown in Figures 2-2 and 2-3. 

lengths were determined by an iterative process. 

for a nominal radiator area of 1000 square feet. 

the optimum radiator area was then determined using these lengths, 

compared with 1000 square feet and the feed line lengths adjusted accordingly. A new 

optimum area was then determined and the comparison repeated until the feed line 

lengths were consistent with the calculated radiator area. Although the weight adjust- 

ments made by each iteration were small, the procedure was necessary to properly 

identify the optimum degree of redundancy and to determine accurately the weight dif- 

ferences in the comparison, 

For the indirect condensing radiators, the feed line 

The lengths were first determined 

For each condition of redundancy, 

The area was 

2.4 CONDENSING RADIATOR ANALYSIS 

The analysis of condensing radiators involves virtually all of the problems encountered 

in the analysis of non-condensing radiators. In addition, there are several fundamen- 

tal characteristics, adding to the complexity of the analysis which warrant some 

discussion. 

2.4.1 CONDENSING HEAT TRANSFER RELATIONS 

The temperature drop from the bulk fluid to the tube wall is generally more difficult 

to calculate for condensing systems than for systems employing liquid working fluids. 

For condensing radiators using potassium in the 13000 F range, this temperature drop 

is small. A s  a result it has been neglected in many of the previous studies of 

2-6 
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4 LOOPS - 4 PANELS 6 LOOPS - 6 PANELS 

R 

a LOOPS - a PANELS I2 LOOPS - 12 PANELS 

Figure 2-2. Feed Line Networks for Indirect Condensing Radiators 
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1 LOOP - 4 PANELS 1 LOOP-8 PANELS 

Figure 2-3. Feed Line Networks for Direct Condensing Radiators 

condensing radiators, such as those of Denington (Reference 2-5), Haller  (Reference 

2 3 ,  Krebs (Reference 2-7), and Stone (Reference 2-8). Neglect of this temperature 

drop results in an underestimate of the required radiator area of only two to three 

percent. However, in the analysis performed for this study, this temperature drop 

was included, not only to improve accuracy, but to insure flexibility in the method of 

analysis to include cases where this temperature drop is not negligible. 

In recent years, the evaluation of condensing heat transfer coefficients for liquid 

metals has received widespread attention. As a result, reliable data are available 

for various liquid metals and specifically for potassium which is of interest for high- 

temperature Rankine power systems. 

The correlation used in this study to predict condensing heat transfer coefficients is 

a modification of Nusselt's relation: 

2 -9 



- 
where hc 

kf 
v = kinematic viscosity 

gc = gravitational constant 

= Reynold's number 
NRe 

= average condensing heat transfer coefficient from fluid inlet to point of 

= thermal conductivity in the film 

complete condensation 

Nusselt's relation tends to overestimate liquid metal condensing coefficients, but for 

many fluids it provides good agreement with experiment. 

The Spartan V code, which is the principal tool used in the condensing radiator anal- 

ysis, uses a variation of the Nusselt relation in order to increase its applicability to 

different systems. This relation uses a multiplier to adjust Nusselt's relation to 

liquid metal experimental data in the following manner: 

(2-4) 

Based on the work of Sawochka (Reference 2-9), the appropriate value for C for 

potassium is 0.5 (See Figure 2-4). The experimental evaluation of potassium con- 

densing coefficients by Sawochka is an important step in the understanding of the alkali 

metal condensing process and in the engineering development of the nuclear potassium 

Rankine power system. A brief outline of this work is given in the following paragraphs. 

C 

Nusselt's condensing model neglected the effects of interfacial shear s t ress ,  turbulent 

transports and a vapor phase thermal resistance. Sawochka attributed the observed 

deviations from Nusselt's relation to the existence of a vapor phase thermal resistance 

which was due to the non-ideality of the potassium vapor. 

due to the formation of dimers and tetramers as well as the monomer in gaseous 

potassium. Evidence for the existence of these species was shown by Ewing (Reference 

2-10). The effect of the non-ideal behavior manifests itself at low pressures (below 2 

psia), in which regime Sawochka observed a sharp decrease in the overall condensing 

he at trans fe r coe ff ic ien t. 

The non-ideal behavior is 

2-10 
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The condensing local heat transfer coefficient is defined by Sawochka as: 

1 
h 

+ -  
V 

1 - - - 1 
h 
- 

C hf 

where hf = heat transfer coefficient in the film 

hv = heat transfer coefficient in the vapor 

The liquid film thermal resistance, l /hf,  was predicted by using film thicknesses 

given by Dukler (Reference 2-11). Assuming a linear temperature profile: 

(2-5) 

where (j = condensate film thickness 

It remains to develop an expression for the vapor phase thermal resistance which will 

fit the data obtained by subtracting the predicted liquid film thermal resistance from 

the measured overall thermal resistance. 

liquid, the rate at which molecules impinge on the liquid surface is equal to the rate 

at  which molecules leave the liquid. From the kinetic theory of gases, this situation 

is described by the following relationship: 

For an ideal gas in equilibrium with its 

(2-7) 

where P =pressure 

M = molecular weight 

R = universal gas constant 

T =temperature 

v = subscript for vapor 

1 = subscript for liquid 

If there is a net mass transfer of vapor into the liquid, which is the case during con- 

densation, the dynamic equilibrium is upset; therefore: 
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wherc W = flow rate 

A 'area 

= gravitational constant % 
For a non-ideal gas Equation 2-8 must be changed to the following: 

= condensation coefficient 

= evaporation coefficient 
=C 

'e 

where 

By equating the condensation coefficient in ~e evaporation coefficient, it cai be shoim 

that: 

(2-10) 

where.. g = W K  

AT = temperature drop 

K = latent heat of vaporization 

The experimental data is shown to correlate fairly well over the temperature range by 

using a value of 0.2 for the condensation coefficient u (See Figure 2-5). Although there 

is no strong argument for equating u to uc , the treatment provided by Sawochka gives 

a better understanding of the condensing process and satisfies the experimental data. 

C 

e 

2.4.2 TWO-PHASE FIXlW PRESSURE DROP 

Since the effective temperature of a condensing radiator is dependent upon the static 

pressure of the condensing fluid, accurate two-phase flow pressure drop predictions 

are necessary for proper radiator design. The complexity of the two-phase flow 

process, which may assume different flow patterns (that is, fog, bubble, slug, annu- 

lar, etc.) under various conditions, makes the formulation of an analytical model 

extremely difficult (See Figure 2-6). The most widely cited analytical work in this 
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Figure 2-6. Two-Phase Flow Regimes 
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area is that of Lockhart and Martinelli (Reference 2-12) who were able to achieve mild 

agreement between their experimental and analytical efforts. 

The two-phase flow pressure drop can be expressed in terms of the frictional pres- 

sure drop and the pressure rise due to momentum changes: 

The momentum term is expressed by the following equation: 

2 
- vo 

gC 

A P m  - 

(2-11) 

(2-12) 

where p =density 

= inlet vapor velocity 
vO 

The equation used for calculating the frictional two-phase flow pressure drop is given 

by the Lockhart and Martinelli relation as: 

2 
(AP/AL)f = qV (AP'A vV 

where (AP/AL) is the pressure drop per uni 
V 

(2-13) 

length if the vapor phase were assumed 

The variable % was correlated to a parameter X which was defined as: to flow alone. 

(2-14) 
V \ I V ' V  

where C = constant used in Blasius equation 

1.1 =viscosity 

D = pipe diameter 

which is equal to the ratio of the liquid to the gaseous pressure drop if each phase 

were assumed to flow separately. The exponents m and n are dependent upon the type 
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of flow present; for turbulent-turbulent flow (turbulent in both the liquid and vapor 

phases), Lockhart and Martineui reduced the above equation to: 

2 (2) la8 % (n> 0.2 
xtt 

(2-15) 

where m = n =  .2 

Experimental curves for 0" versus X were presented by the experimenters to provide 

a means of calculating two-phase flow pressure drops, Lockhart and Martinelli sug- 

gested that this method could be used for  all flow patterns except slug flow; however, 

the correlation has been shown to differ by as much as 250 percent from experiment. 

McMillan, Fontaine and Chaddock (Reference 2-13) proposed a modification to the 

Lockhart and Martinelli correlation which included the effect of the interfacial shear 

between the two phases in determining the pressure drop. McMillan et al pictured the 

gas phase as flowing in an annulus surrounded by liquid; the interfacial waves are 

thought of as forming a "rough wall. Confining themselves only to the turbulent- 

turbulent case, McMillan et al used the approach outlined below. 

A s  previously stated, the Lockhart-Martinelli correlation is defined as: 

(2-16) 

where the friction factor, f is expressed in the Blasius form: 

= 
(2-17) 

The values used by Lockhart and Martinelli for turbulent-turbulent flow were C = 

0.046 and m = 0.2, which correspond to smooth pipes. In order to account for inter- 

facial roughness, McMillan et al, using dimensional analysis, defined a new variable 

6, which is the ratio of vapor Reynolds number to Weber number. Theta is the ratio of 
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surface tension to viscous forces and includes all the important parameters affecting 

interfacial surface roughness; it is written as: 

It was assumed that the interfacial roughness could be measured in terms of C which 

was postulated to be a function of 8. Experimental work was performed to obtain the 

relationship between C and e using the gas and liquid phases of trichloromonofluouro- 

methane. The value of C obtained can be expressed in terms of the experimental 

measurement for (A P/ A L) and the Lockhart-Martinelli formulation. Using 

Equations 2-16 and 2-17: 
tP 

(2-19) 

The results obtained from this treatment are as follows: 

8 I; 57.23 c = 0.10 
-0.9225 

C = 4.182 6 

For the data examined, the analytical predictions by McMillan et  al resulted in an 

accuracy of f10 percent as compared to +56 to -35 percent by the Lockhart-Martinelli 

correlation. 

The proposed "rough wall model" modification of the Lockhart-Martinelli correlation 

is used in this study and efforts have been made to judge its applicability to two-phabe 

flow pressure drop measurement for liquid metals by comparison with experimental 

data. Gutierrez , Sekas , Acker and Fern (Reference 2-14) have conducted experiments 

with potassium condensing in a radiator panel over a range of fluid temperatures from 

1200 to 1500' F. 

ID, 4.0-inch OD) which were joined by nine parallel flow tubes using a central fin 

geometry; 316 stainless steel was used throughout. 

The panel consisted of cylindrical inlet and outlet headers (3.5-inch 

The tubes had an inside diameter 



. 

of 0.500 inches and an outside diameter of 1.34 inches; fins were 0.080 inches thick 

and 0.90 inches long. A separation distance of 0.125 inches was kept between fins. 

Environmental pressure was kept at 3 x 

30PF during the radiator test. Analysis was performed using these test conditions 

and assuming a vapor inlet quality of 88 percent. 

torr  and the sink temperature was below 

To perform the analysis, the Spartan V computer code (to be discussed more fully 

later) was used. The results of the study are shown in Figures 2-7 through 2-12 for 

fluid inlet temperatures of 1235, 1350, and 142OOF. 

variation of static pressure drop with the inlet vapor flow rate. 

Figures 2-7 through 2-9 show the 

McMillm's mndification of the Tfickcart-Martinelli correlation gives excellent agree- 

ment over the range of inlet vapor flow rates for the inlet temperatures of 1235 and 

142PF. For the inlet vapor temperature of 1350 the analytical curve is lower than the 

best fit through the data. Personal communication with 0. A. Gutierrez of NASA-Lewis, 

however, revealed that the data at 1350°F is of a preliminary nature and that a final 

report on the test is in preparation. Figures 2-10 through 2-12 show the variation of 

condensing length with inlet vapor flow rate. Also shown a re  the analytical results pre- 

dicted by Gutierrez et al and by Spartan V. Since no attempt was made by the experi- 

menters to include the axial fluid temperature drop due to the static pressure change, 

their predicted condensing lengths are less accurate a t  the high flow rate conditions. 

The close agreement shown between Spartan V and the experimental results seem to 

demonstrate the applicability of the modified Lockhart-Martinelli correlation to liquid 

metal two-phase flow. 

2.4.3 FLOW STABILITY 

Necessary to successful direct condensing radiator design is the ability to maintain a 

constant flow of fluid, free of any instabilities. Inherent in this requirement is the 

ability of the condensing fluid to maintain a single flow pattern under any external o r  

internal perturbations to which the system is subjected. Different flow patterns re- 

sult in different fluid inventories in the condensing tube which causes a shift in the 
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vapor-liquid interface. A stable vapor-liquid interface is the controlling factor in 

producing dependable and predictable condensing radiator performance. 

The flow instabilities pertinent to condensing radiators are  interfacial instability, 

runback instability, liquid leg instability and zero-g instability. 

phase flow instabilities have been examined analytically and experimentally by various 

investigators, notably V. H. Heiskala, R. C. Smith, E. A. Elliott and R. T. Lance1 

These forms of two- 

(Reference 2-15) under the Mercury Rankine Program (SNAP-8). 

Interfacial instability is the inability of the fluid to form a stable meniscus which 

separates the condensing and subcooling portions of the tube (See Figure 2-13). The 

stability of the meniscus is dependent upon surface tension energy and the kinetic and 

potential energy of the disturbing wave. 

E/X, is given by Lamb (Reference 8-16) as: 

The total energy per wavelength of a wave, 

(2-20) 

= maximum wave amplitude 
q0 

where 
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Figure 2-13. Condensing Tube Fluid Profiles 

By integrating along the length of the wave, the surface tension energy per wave- 

length is: x 

(El’) Surface = l / X  
Tension 

d P  n dx 

0 

(2-21) 

Assuming a sine wave form and taking a force balance at the vapor-liquid wave 

interface, Equation 2-21 is shown by Tong (Reference 2-17) to reduce the following: 
n 

(2-22) 

Tension 

where (3 = Surface tension 

In order for the wave to damp out, the surface tension energy must be greater than the 

sum of the potential and kinetic energies. Therefore, the longest stable wavelength is: 

r 0 x =2n  (2-23) 
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For cylindrical geometry, the stable wavelength can be related approximately to a 

critical diameter: 

(2-24) 

Consideration of the contact angle between the liquid and the tube walls leads to the 

following conservative relationship when the contact angle is zero or  180 degrees : 

(2-25) 

Experiments conducted by Denington e t  a1 (Reference 2-4) using mercury and water 

have proven the validity of Equation 2-25. The results of their investigations, which 

included zero gravity tests, indicated that interfacial stability could be maintained 

in the presence of external disturbances by choosing appropriate tube diameters. 

Using the above relation, it can be shown that the reference design radiator, having a 

tube diameter of 0.271 inches at the end of the condensing section, may experience 

interfacial instability during adverse accelerations exceeding 0.6 g. 

Runback instability is the movement of slugs of condensate in the condensing tube 

toward the vapor header, resulting in pressure fluctuations and an unstable interface. 

This condition occurs when external body forces, opposing the direction of fluid flow, 

become greater than the vapor shear forces being exerted on the condensate film. 

Denington e t  a1 (Reference 2-4) have investigated the mechanism of runback in 

vertical pipes for water in a one g environment. During stable condenser operation 

the wall shear force was assumed to be in the downward direction, but as runback 

occurs the wall shear force reverses direction. 

point at which the wall shear force becomes zero is the runback point. 

Therefore, it was reasoned that the 

From the 
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experimental data it was found that runback could be eliminated if the vapor velocity 

were greater than the critical velocity obtained from the following equation: 

1/2 D 2  g 
C = 308 (PI Pv) - 

PV 

Using this approach, it can be shown that the design radiator can operate against an 

external acceleration of approximately 0.188 g without danger of runback. 

Zero g instability is the emptying of the liquid condensate back into the vapor header 

due to a positive pressure gradient down the condensing tube. 

possible for short condensing length to diameter ratios and small momentum losses 

where the interface static pressure becomes larger than the inlet total pressure. 

Since the design condensing radiator has a static pressure drop of 3 . 7 8  lb/in in the 

condensing tube section, this instability cannot arise. 

This condition is 

2 

BEGINNING OF SLUG 
DUE TO RUNBACK 

RUNBACK PO 

FORMATION 

I NT 

Figure 2-14. Runback Instability 
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Liquid leg instability results in the flow of vapor into the liquid header and liquid 

running back into the vapor header. 

flow of vapor into the E M  pump will make the system inoperable. 

This is a disastrous form of instability since the 

Liquid leg instability is caused by a larger pressure gradient in the liquid film than 

exists in the vapor. This condition can arise when external forces such as gravity 

create radial pressure differences between the annular condensate film and vapor. 

At  the interface of the condensing and subcooling sections, the vapor and liquid inter- 

face pressure must be equal. Therefore, near the tube inlet the static pressure in the 

liquid leg will be higher than the pressure in the vapor. The liquid axial pressure 

gradient for a stable film can be given by: 

(2-27) 

The vapor axial pressure gradient can be calculated using the available correlations 

for two-phase flow, 

For the design condensing radiator the static pressure gradient is 0.0312 (lb/in ) /in. 

The liquid pressure gradient in the design radiator will exceed this when an opposing 

force greater than 1.29 g is present. 

2 

2.4.4 RADIATOR COMPUTER CODES 

The comparison between the indirect and direct condensing radiators was performed with 

the aid of the Spartan III and V radiator optimization codes. 

Since the singular purpose of Spartan III and V is the same, the basic considerations 

in obtaining an optimum design are similar for each of the programs. 

ations include the simultaneous solution of the meteoroid survival, thermal and fluid 

flow requirements, while optimizing toward a minimum system weight with the 

These consider- 
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possibility of an added constraint. The constraint may be an area limit, pump work 

limit, pressure drop limit or  some combination of these. 

The following is a list of input and output common to both Spartan III and V: 

INPUT 

0 

0 

0 

e 

0 

0 

0 

0 

0 

0 

0 

Thermal Requirements 

Mission Requirements 

Environmental Factors 

j?.hysicai moperty Data 

Configuration 

Geometric Factors 

Criteria for 

Flow Characteristics 

- heat rejected, inlet temperature, fluid tempera- 

- life, reliability 

- Meteoroid size, density, flux, incident heat 

- densities, Youngs: Moduli, viscosities, conduc- 

- different fin tube designs, various header , and 

- numbers of panels, tubes, tube spacing fin 

- pressure drop, heat transfer, meteoroid armor 

ture drop 

fluxes, view factors 

tivities, etc. 

feed line designs 

thickness, etc. 

and bumper effects 

OUTPUT 

- velocities, Reynolds number, pressure 
drop, pump work 

Temperature Characteristics - header and tube temperatures, fin tempera- 

Weights - fins, tubes, headers, liner, armor, fluid, etc. 

Geometry - projected radiator area, armor thickness, 

tures and efficiencies, sink temperature 

vulnerable area, tube length 

Other significant features of the SPARTAN codes are as follows: 

0 The optimization process is performed by a separate "logic" subroutine 
which can perturb up to 20 inputs simultaneously to obtain a minimum system 
weight case. 

Capability to include the system weight penalty associated with pump work in 
the optimization. 

0 
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All or any fraction of the fin may be credited as bumper armor and the liner 
as  integral armor for meeting meteoroid armor requirements. 

Temperature drops across the film, liner and armor are  accounted for. 

Pressure drops include friction, turning and expansion and contraction losses. 

Panels may have common hot and cold headers. 

Armor may be preferentially located, a s  may be the case of a radiator in the 
shape of an open split cylinder. 

Fraction of the tube and header vulnerable area may be excluded from the 
armor calculations if otherwise protected, as by tankage. The vulnerable 
area of the tubes and headers may be based on the inside, outside or any 
intermediate area. 

Analyses include effect of radiation interchange between fin and tube for 
central f in  tube heat rejection. 

Spartan V was developed by GE-MSD over the past year specifically to design minimum 

weight direct condensing radiators. The code includes in d e w  the effects of two- 

phase flow on radiator feed line, header and matrix design from thermal and fluid 

dynamic aspects. The design criteria incorporated into Spartan V, including meteor- 

oid criteria, fin-tube-header geometries, weight calculations and optimization proce- 

dure a re  completely consistent with Spartan III in order to achieve as  accurate a 

comparison as possible. 

The analysis presented in the Spartan V program considers the panel to be the radiator 

basic '!building block. This consists of an inlet and outlet header connected by flow 

tubes; the flow tubes are  separated by conduction fins. Due to the large variation in 

fluid density from tube inlet to outlet, the flow tubes are  assumed to be divided into a 

tapered two-phase fluid section and a straight subcooling portion. In addition to 

radiator panels, the program has the capacity to consider inlet and outlet feed lines in 

calculating radiator loop pressure drop, armor requirements and weight. This is an 

important consideration for several reasons. Due to feed line effects, radiator inlet 

temperature, pressure and quality can change drastically from turbine exit conditions; 

also, inlet feedlines can comprise a significant fraction of the total vulnerable area. 
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The significant features of the Spartan V code which differ from Spartan III are listed 

below : 

0 

0 

0 

0 

Incremental condensing tube pressure drop which includes frictional, 
momentum and expansion and contraction losses 

U s e  of a modified Lackhart-Martinelli two-phase flow pressure drop correla- 
tion which includes liquid-vapor interface effects 

Calculation of condensing heat transfer coefficients and condensate film, liner 
and armor temperature drops 

Tapered condensing tubes 

Subcooled liquid tube section 

Binietallic f in  option 

Different size inlet and outlet headers and feed lines 

All design radiators were obtained by using the optimization routine included in the 

Spartan codes. 

temperature drop, number of tubes per panel, inside tube diameter, fin thickness and 

feed line diameter. In comparing the different combinations of redundant panels, the 

following assumptions o r  inputs were included in Spartan IIt: 

For the indirect cycle radiators the Spartan IU code optimized the fluid 

a. At  the end of mission lifetime the surviving panels have the capability to 
reject the specified waste heat without changing cycle conditions. For 
example, if 2 of 4 panels survive, the system was designed to reject twice 
the heat at start-up. 

For design simplicity cylindrical headers were used as opposed to the 
lighter parabolic header design. In order to avoid maldistribution, the 
headers were sized so as to give a negligible pressure drop as compared to 
tube pressure drop. 

None of the radiators were area limited. 

Stainless steel tube liners 0.028 inches thick 

Stainless steel header liners 0.020 inches thick 

Fluid velocity in headers was limited to one half the fluid velocity in the tubes. 

b. 

c. 

d. 

e. 

f. 

For the direct condensing radiator the weight was optimized by varying the number of 

panels, number of tubes per panel, fin thickness, condensing tube taper, inlet feed 
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line diameter and pressure drop from turbine exit to vapor-liquid interface. The 

assumptions made in Spartan V were the same as  those in Spartan III except for those 

listed below, which accommodate the two-phase flow process : 

1. 

2. 

3. 

Adiabatic two-phase flow in the inlet feed lines 

Parabolic inlet and outlet headers 

The smallest return feed line was limited to a 1 inch diameter. 
cri teria was found to limit the pressure drop in the return feed lines to an 
order of magnitude lower than that necessary to cause "flashing" of the sub- 
cooled liquid. 

This 
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3. RADIATOR C O M P A R I S O N  

3.1 SPACECRAFT DESCRIPTION 

The spacecraft concepts used as a basis for the radiator types compared in this study 

are shown in Figures 3-1 and 3-2. The spacecraft configuration used in both cases is 

consistent with the results of the first two tasks performed under this contract. That 

is, the arrangement of components and shielding requirements are appropriate to an  

unmanned interplanetary probe mission, and the radiators are non-deploying, load 

Lon-: - Q I I I L f j ,  &id C G C ~ C ~  in s k ~ p e .  Thc half-ciiiie angle is ciiose1i 8s io degrees iu minimize 

shield weight and launch loads. The primary radiator supports all other components of 

the power system during launch. The power conversion equipment is located in a sealed 

unit, supported by a conical structure from the top of the primary radiator. The sec- 

ondary, or  auxiliary cooling radiator, surrounds the power conversion equipment and 

supports the reactor and shield. During launch, a small aerodynamic fairing covers 

the reactor and shield. 

Since the launch vehicle is assumed to be a three-stage Saturn V, the payload must mate 

with the 260-inch diameter of the S-IVB stage. 

area required for heat rejection is less than that available on a cone with a 10-degree 

half-angle. A payload section, which includes the electric propulsion, communications, 

and navigation and control systems is attached to the base of the radiator and acts as an 

adapter section to the launch vehicle interface. 

for comparison, shown in Figure 3-2, has an area that conveniently matches the area 

available on the conical section, The payload section for this concept is a cylindrical 

section and can therefore be made in any convenient length. 

For the direct condensing radiator, the 

The indirect condensing radiator used 

The size and shape required for the payload section depends on the particular mission 

requirements. Therefore, no weight implications can be drawn from the more con- 

venient area match of the indirect condensing system radiator. 
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TO keep the header length close to an optimum value, the radiator must be divided into 

a number of panels, which must always be a multiple of the number of independent loops. 

For the non-redundant systems compared in Reference 3-1, it w a s  not necessary to divide 

the area into panels of equal area, since all panels were connected in a single loop. Instead, 

the tube lengths in each panel w e r e  held constant, close to the optimum value. 

redundant systems considered in this study, however, the individual loops must be of 

equal heat rejection capability, that is, the panels must be of equal area. To fit equal 

area panels on a conical surface, it is necessary to use unequal tube lengths. 

ample, in Figure 3-2, the upper bay is 191 inches in length and the lower bay is 146 

inches in length. A s  a result, the radiator panel weights are greater for the lower bay 

than for the upper bay and therefore, reflect a tube length that is further from the opti- 

mum value. However, these weight differences are insignificant and generally vary 

less than 2 percent from one bay to another. Therefore, the detailed parameters for 

each radiator (Tables 3-1, 3-2, and 3-4) are listed only for the upper bay. 

In the discussion of two-phase stability, it was noted that the reference design condensing 

radiator would experience runback instability under the influence of an adverse accelera- 

tion greater than 0.188 g's. 

missions, accelerations typically will not exceed 10-4 g. However, some applications 

of nuclear potassium Rankine systems may require the power system to operate under 

acceleration conditions for which instability is a problem. To avoid adverse accelera- 

tions, the vapor headers are placed at the top of each bay, as shown in Figure 3-1. This 

arrangement introduces the problem of a temperature gradient across the bay joint. 

Excessive thermal s t resses  would occur if  this joint were not designed in order to per- 

mit differential radial expansion between the two bays. Similar thermal gradient prob- 

lems occur at the joints between the primary and secondary radiators and between the 

primary radiator and the payload section. Concepts for joints of this type are discussed 

in Reference 3-2. An alternative solution is to use a single bay for the condensing radi- 

ator and pay the weight penalty for an off-optimum tube length. 

For the 

For ex- 

For electrically propelled, unmanned interplanetary probe 
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3.2 STARTUP CONSIDERATIONS 

The problem of startup has been recognized as one of the major unresolved problems 

in the development of Rankine system radiators and condensers (Reference 3-2). 

Consideration of the s tar lup procedures may be the deciding factor in the selection of 

direct or indirect condensing radiator systems. Although startup of a nuclear system 

is a complex systems problem, certain aspects pertaining only to the heat rejection 

system can be considered independently. Although a separate and thorough study of 

startup considerations is beyond the scope of this study, some discussion of the startup 

problem has been included in this study to identify the key factors. 

The primary concern for the heat rejection loop is to avoid coolant freezing. This is 

sf less 2cn2ern in thc Gtbzr 2ompGze;lts of *,e power system becxisz the * I C :  iilveilt.Grj7 

is smaller and can be packaged to conserve heat loss. The liquid metal coolants suit- 

able for use in the primary heat rejection loops have melting temperatures in  the same 

range of temperature that might be expected in space prior to startup. The indirect 

condensing radiator, using NaK with a melting temperature of 12' F, clearly is less 

susceptible to freezing than the direct condensing radiator using potassium, with a 

melting temperature of 147 ' F. Figure 3-3 shows the variation in effective sink tempera- 

ture with absorptance and emittance for various configurations and orientations. The 

incident solar flux, earth emission and albedo of a 260 n. mi. orbit were assumed. It 

can be seen that radiator equilibrium temperatures above the melting temperature of 

NaK can be achieved with appropriate selection of (Y and e .  

radiator with its axis normal to the solar flux and parallel to the earth horizon (curve B), 

has an effective sink temperature of 140'F when a = 0.85 and 

of absorptance and emittance are typical of presently available iron titanate plasma 

sprayed coatings, suitable for use at 1300'F. The penalty on thermal performance at 

operating temperature is negligible, as shown in Figure 3-4. 

ture represents the average equilibrium temperature that the radiator would approach. 

However, without rotation, severe circumferential temperature gradients can exist, as 

shown in Figure 3-5. This suggests that it will be necessary to provide a slow rotation 

of the radiator about its axis to prevent freezing. An additional safety margin on coolant 

For example, a cylindrical 

= 0.9. These values 

The effective sink tempera- 
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freezing may be obtained by using a tertiary alloy with a lower melting temperature, at 

the expense of some penalty in thermal performance. (References 3-4, 3-5) In any event, 

it appears that the startup problems associated with an indirect condensing radiator, using 

NaK coolant, can be resolved and that the solutions would also be applicable to power sys- 

tem shutdown and restart. 

The startup problems of the direct condensing radiator, however, are more difficult. 

Figure 3-3 indicates that solar heating cannot be relied upon to maintain the radiator 

temperature above the melting temperature of potassium if  the radiator is cylindrical in 

configuration. A flat panel configuration oriented normal to the solar flux (curve A) per- 

mits sufficiently high temperatures, but this implies a non-load bearing concept with a 

resulting structural weight penalty. The alternatives are to use a heat source o r  re- 

movable insulation to reduce heat losses, or some combination of both. Whereas the 

indirect condensing radiator can be launched filled with fluid, the direct condensing 

radiator would be launched "dryf1, with the potassium injected at the time of power sys- 

tem startup. This means that the circulation of the coolant through the radiator cannot 

be used to preheat o r  maintain the radiator at temperature. A separate heating network 

would therefore be required. 

would be prohibitive. Radioisotopes are attractive as heat sources, but a pumped coolant 

distribution system would be required. Pyrotechnic heating has also been proposed as a 

solution (Reference 3-6). The choice of preheating systems may be determined by the 

necessity for multiple start capability. 

The weight of an electrical heater covering all fluid passages 

The energy requirements for preheating can be significantly reduced or  eliminated en- 

tirely by providing insulation over the radiator surface. This insulation would then be 

removed at the time of startup. 

The requirement to provide insulation on the radiator during launch is somewhat in- 

consistent with the concept of using the radiator as a load-bearing component. The in- 

sulation must withstand aerodynamic forces and have sufficient stiffness to avoid dynam- 

ic response (flutter). If the insulation is stiff generally as well as locally, it then 

carries all aerodynamic loads and becomes a primary load path. An examination of 

startup requirements is therefore essential to reaffirm conclusions on the merits of 

load-bearing versus non-load-bearing radiators. Under certain circumstances, it is 
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possible to provide a lightweight system of insulation and avoid the launch load problems. 

In Reference 3-7, a concept was discussed for a multiple use thermal shroud which 

took advantage of rotation to deploy and eject the insulation. 

3.3 REFERENCE DESIGN RADIATORS 

This section discusses the results of the radiator analyses, and identifies the reference 

designs used for comparison. For the indirect condensing system radiators, it was  

found that significant weight reductions could be obtained by the use of redundancy at 

the highest survival probabilities considered. Redundancy for the direct condensing 

radiators was not considered, since this would involve system concepts beyond the 

scope of this study, 

Figure 3-6 shows the effect of redundancy on the weight of the radiator for the indirect 

condensing system. The redundancy is described in terms of the number of independent 

loops required for full power heat rejection capability, compared with the number of 

loops provided. 

saving realized is a result of a reduction in armor and fin weight. (Note that for the 

cylindrical radiator configuration, the fin contributes significantly to the armor pro- 

tection. ) However, as the degree of redundancy increases, the increased radiator 

area offsets the reduction in armor weight. This is illustrated in Figure 3-6, where 

it can be seen that the 5/6 case is lighter than either 3/4 or  4/6. An additional effect 

is that, as the number of loops provided increases, the additional feed line weight off- 

sets the reduction in armor weight. Hence in Figure 3-6, 7/8 is not sjgnificantly lighter 

than 5/6, and 11/12 is definitely heavier. In Table 3-1, detailed parameters have been 

listed for each of the optimum redundant cases: 3/4, 5/6, 7/8, and 10/12. 

Cases were analyzed for four, six, eight, and twelve loops. The weight 

Figure 3-6 also shows that the optimum redundancy changes with survival probability. 

As survival probability is  changed from 0 . 9  to 0.99, and 0.999, the lightest redundant 

radiator weight is achieved with 3/4, 5/6 and 7/8 loops surviving, respectively. 

The effect of redundancy can be seen by comparing the detailed parameters listed in 

Table 3-2 for 5/6 loops surviving and 6/6 loops surviving. The 30 percent difference 
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3 
TABLE 3-1. SUMMARY OF LIGHTEST WEIGHT RADIATORS 

(OVERALL SURVIVAL PROBABILITY = 0.999) 

LOOPS SURVIVING/TOTAL 
NO, OF LOOPS 3/4 5 /6 7 /8 10/12 

*Total Heat  Rejected 

Radiator Weight 

Radiator Area 

Inlet Fluid Temperature 

Fluid Temperature Drop 

Number of Panels 

Number of Tubes/Panel 

Header Length 

Tube Length 

Inside Tube Diameter 

Inside Header Diameter 

Fin Thickness 

Fin Length 

Fin Efficiency 

Total Vulnerable Area 

(kW) 2460 

(lb) 3052 

(ft2) 1709 

(OF) 1300 

( O F )  390 

4 

78 ' 

(ft) 21.6 

(ft) 19.3 

(in. ) 0.206 

(in. ) 2.57 

(in.3 0.066 

(in. 1 1.48 

(%I 77.7 

(a2) 1156 

Required Armor Thickness (in. ) 

Tube Armor Thickness (in. 1 
Weight of Armor (1b) 

Weight of Fins (1b) 

Weight of Tubes 

Weight of Headers 

*Weight of Feed Lines (lb) 

Hydraulic Pump Power (kW) 

0.309 

0. 050 

5 92 

1067 

1080 

371 

535 

4.14 

2460 

27 12 

15 28 

1300 

380 

6 

55 

14.4 

17.3 

0.194 

2.03 

0.064 

1.40 

79.2 

75 

0.304 

0.051 

537 

927 

972 

247 

566 

3.77 

2.3 

1 

246 0 246 0 

2687 2925 

1441 2023 

8 

41  

10.8 

16.4 

0.192 

1.74 

0.064 

1.41 

78.8 

1300 1300 

390 46 0 

12 

40 

12.4 

13.3 

0.180 

1.61 

0.042 

1.71 

67.0 

1027 210 

0.303 0.21 

0.050 0.033 

494 369 

876 8 05 

899 820 

190 28 8 

710 1013 

3.40 3.48 

2.15 1.95 Smallest Feed Line Dia (in.) 2.4 

* This value refers to the end-of-life condition when loop failure has occurred. 

** The feed line weight includes the weight of the fluid. 
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TABLE 3-2. EFFECT OF REDUNDANCY ON RADIATOR WEIGHT 
(OVERALL SURVIVAL PROBABILITY = 0.999) 

LOOPS SURVIVING/TOTAL 
NO. OF LOOPS 

Heat Rejected 

Radiator Weight 

Radiator Area 

Fluid Inlet Temperature 

Fluid A T  

Number of Panels 

Number or̂  Tubes per Panei 

Header Length 

Inside Tube Diameter 

Inside Header Diameter 

Total Vulnerable Area 

Required Armor Thickness 

Tube Armor Thickness 

Fin Thickness 

Fin Efficiency 

Tube Length 

Smallest Feed Line Inside 
Diameter 

Radiator Loop A P  

Feed Line A P  

Coolant Flow Rate 

Hydraulic Pump Power 

Pump Penalty 

Weight of Feed Lines 

Weight of Headers 

Weight of Tubes 

Weight of Fins 

Weight of Armor 

2.46 

27 12 

1528 

1300 

380 

6 

55 

14.4 

0.194 

2.03 

1075 

0.305 

0.0507 

0.0640 

79 

17.3 

2.3 

24.9 

10.6 

34.4 

3.7? 

125 

566 

17 1 

972 

927 

5 37 

2.46 

3917 

1117 

13 00 

27 0 

6 

33 

14.4 

0.246 

2.00 

958 

0.780 

0.170 

0.172 

77 

12.6 

2.4 

21.7 

9.65 

40.4 

3.86 

125 

5 07 

164 

1361 

1810 

1119 

2.46 

3597 

1077 

13 00 

25 0 

8 

29 

12.2 

0.258 

1.96 

898 

0.768 

0.164 

0.172 

78 

10.7 

1.3 

11.6 

4.33 

43.6 

2.23 

200 

25 1 

26 1 

1348 

1737 

1094 

* From Reference 3-1 - 



i n  weight can be attributed to the reduction in armor thickness from 0.780 inches to 

0.305 inches. Table 3-2 also shows the parameters for the indirect condensing system 

radiator used in the structural comparison of Reference 3-1. It can be seen that for non- 

redundant radiators, the lightest weight is achieved with the fewest number of inde- 

pendent loops. The penalty paid for redundancy is increased radiating area. Table 

3-2 shows that the radiator with 5/6 loops surviving requires 37 percent more area 

than the radiator with 6/6 loops surviving. For the launch vehicle limitations considered 

in  this study, this increased area has no adverse effects. However, if the area available 

were less than the area required for optimum design, the weight penalty could offset 

any gains from redundancy. This effect is important in extrapolating the results to 

higher power levels. In order to retain the advantageous armor reduction afforded 

by redundancy when area limitations become critical, it may be desirable to consider 

concepts such as utilization of the upper launch vehicle stages or deployable radiators. 

In order to make a system weight comparison, the pump weight, pump power weight 

penalty, and the condenser weight must be added to the radiator weight for the indirect 

condensing system. These weights may also have an influence on the selection of op- 

timum redundancy arrangement. 

The pump weights for each radiator are  obtained as a function of flow rate and pressure 

drop, using the approximate relation shown in Figure 3-7. The weights shown in this 

figure are  estimated from data presented in Reference 3-8. The conclusion drawn in 

Reference 3-8 , which covers a survey of various pump types and configurations, is 

that ac induction pumps are  the best choice for space nuclear systems. Although lighter 

by as much as a factor of 2 . 5 ,  dc conduction pumps are  eliminated because of relia- 

bility considerations. 

The pump power weight penalty was specified as 25 lb/kWe. This penalty represents 

the increase in the entire power system weight in order to provide the additional pump 

power. It may be observed in Table 3-3 that the penalty has a minimum value when eight 

loops a re  provided. 

Tne condenser weight is assumed to be 200 pounds for all the systems considered. 

weight is estimated by scaling the condensers described in Reference 3-2. Although 

This 
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TABLE 3-3. SUMMARY O F  INDIRECT SYSTEM COMPONENT WEIGHTS 
(SURVIVAL PROBABILITY = 0.999) 

LOOPS SURVIVING/LOOPS PROVIDED 

Radiator Weight 

Pump Weight 

Pump Power Weight Penalty 

Condenser Weight 

Total Weight 

3/4 

3050 

410 

52 0 

200 

4180 

5/6* 

27 10 

440 

470 

200 

3820 

7/8 

2690 

47 0 

43 0 

200 

3790 

10/12 

2920 

540 

440 

200 

4100 

there is some argument for increasing the condenser weight as a function of the number 

of heat rejection loops provided, the weight is more strongly a function of the con- 

densing surface area required, which is approximately constant. 

Table 3-3 shows the effect of considering the additional heat rejection system components., 

The result is  that 7/8 loops have the lightest redundancy arrangement by a margin of less 

than 1 percent. Although pump reliabilities are not considered explicitly in this study, it 

seems reasonable to conclude that the elimination of two pumps in choosing 5/6 rather 

than 7/8 loops is worth this small penalty. 

The direct condensing radiator has the advantage of system simplicity in eliminating the 

need for a condenser-heat exchanger and heat rejection loop pumps. 

tive radiating temperature of the direct condensing radiator significantly reduces the 

required heat rejection area. The smaller surface area becomes an important con- 

sideration when area limitations are approached. 

The higher effec- 

Although redundancy is not considered, two different panel arrangements for the direct 

condensing radiator a re  included in the study. Eigure 3-8 shows the weights for four- 

and eight-panel configuration, for survival probabilities of 0.999, 0.99 and 0.9. The 

four panel configuration has a single bay, with tubes running the fu l l  length of the radi-  

ator. The radiator weights are plotted against the static pressure drop in the vapor 
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section of the radiator loop, which is actually a measure of the temperature drop from 

turbine exit to the point of complete condensation. The effect of increasing the pressure 

drop in the condensing tube section is to reduce tube diameter and vulnerable area, but 

also to lower the effective radiating temperature. The overall effect is to make the 

radiator weight insensitive to pressure drop for the conditions investigated. 

The eight-panel configuration chosen as the reference design has inlet headers located 

at the top of each bay (Figure 3-1). As discussed previously, this arrangement would be 

required for missions in which the operating radiator would be subjected to an axial ac- 

celeration greater than 0.188 g. This arrangement has the disadvantage of placing a 

large thermal gradient across the joint between bays, and thus requires provisions foi- 

relative radial expansion. The weight penalty of such an expansion joint i s  not included 

in  the comparison of this study since there a re  relatively few missions where accelera- 

tions of this magnitude would be experienced. An alternative to the expansion joint 

would be to use a single bay, as indicated by the four-panel configuration. The weight 

penalty of a single bay arrangement is indicated by the comparison shown in Table 3-4. 

This penalty would increase rapidly with increasing power level as the tube length in- 

creased further from the optimum. 

To show the influence of the tube taper on radiator weight, data were  generated with 

the Spartan V code for variations of the reference design radiator. Figure 3-9 shows 

the relationship between radiator weight, tube taper, and inside tube diameter at tube 

outlet. The choice of taper and outlet tube diameter is determined mainly by minimiz- 

ing the vulnerable area per tube while satisfying the pressure drop constraint. 

Although the feed line design is a major consideration in any space radiator design, the 

two-phase flow radiator system is more sensitive to pressure drop variations in both 

the inlet and outlet feed lines. The higher the inlet feed line pressure drop, the lower 

the effective radiator temperature in the condensing section. The variation of weight and 

radiator inlet fluid temperature with changing feed line diameter is shown in Figure 3-10. 

for the condensing radiator. 

the inlet feed line network which occurs at the feed line-inlet header joint. A t  a feed 

The feed line diameter refers to the smallest diameter in 
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TABLE 3-4. CONDENSING RADIATOR COMPARISON 
(SURVIVAL PROBABILITY = 0.999) 

8 PANEL* 4 PANEL 

Heat Rejected 
Radiator Weight 
Radiator Area  
Inlet Fluid Quality 
Fluid Temperature at Feed Line Inlet 
Fluid Temperature at Vapor-Liquid 

Fluid Temperature at Radiator Exit 
Number of Tubes per Panel 
Header Length 
lnside Tube Diameter at Iniet 
Inside Tube Diameter at Outlet 
Inside Vapor Header Diameter at Inlet 
Inside Liquid Header Diameter at Outlet 
Total Vulnerable Area  
Required Armor Thickness 
Tube Armor Thickness 
Fin Thickness 
Fin Efficiency 
Length of Condensing Section 
Length of Sub- cooling Section 
Smallest Inlet Feed Line Diameter 
Smallest Outlet Feed Line Diameter 
Inlet Header Vapor Velocity 
Inlet Tube Vapor Velocity 
Weight of Feed Lines 
Weight of Condensing Tube Section 
Weight of Sub- cooling Tube Section 
Weight of Fins 
Weight of Vapor Headers 
Weight of Liquid Headers 
Weight of Armor 

Interface 

2.46 
2920 ** 

83.8 
8 15 

1350 

1275 

1100 
24 
9.17 
0.458 
0.271 
3.17 
1.88 

0.780 
0.155 
0.185 

8 06 

80 
10.1 

0.60 
3.3 
1.0 

253 
504 
159 

1223 
62 

14 02 
27 
47 

1043 

2.46 
3346 

798 

135 0 

1275 

1100 
22 

83.8 

9.17 
0.749 
0.448 
4.97 
2.97 

0.799 
0.151 
0.195 

85 2 

79 
19.9 

1.18 
3.4 
1.0 

209 
417 
16 7 

157 0 
80 

1457 
21 
51 

1299 

* Reference Design Radiator 
** Does not include weight penalty for expansion joint between bays. 
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line diameter less than 2.14 inches, the feed line pressure drop is greater than that 

allowed in the entire vapor section of the radiator loop. Feed line diameters larger 

than 3.3 inches result in a weight increase due to the effects of vulnerable area and the 

weight of the feed line piping and fluid. 

One aspect of the design direct condensing radiator which deserves examination is the 

temperature history of the fluid from the point of turbine exit to the point of return to 

the EM pump (See Figure 3-11). 

turbine at a temperature of 1350°F, a static pressure of 11.9 psi and a quality of 83.8 

percent. Adiabatic flow is assumed in the feed lines. The static pressure drop in the 

inlet feed lines causes the fluid temperature to decrease to 1344'F at the radiator inlet; 

this flow process results in a slight change in fluid quality (83.9 percent at radiator 

inlet). The potassium then enters the inlet headers which are  assumed to be situated 

beneath the radiating surface. 

The two-phase fluid enters the inlet feed line from the 

In the condensing portion of the radiator tubes, the potassium temperature decreases to 

1275'F as a result of the static pressure drop. 

be less than the momentum pressure r ise  for this type of system, is increased by the 

tube taper. 

section which promotes flow stability and also offers a slight weight advantage. 

The frictional pressure drop, which can 

The tapered tube insures a negative pressure gradient in the condensing tube 

One characteristic of the direct condensing radiator is the large axial temperature 

gradient in the fluid in the subcooling portion of the tube. This is due to the low mass 

flow rates, high fluid temperature, and generally low sink temperatures involved. For 

the direct condensing radiator under consideration, the fluid undergoes a temperature 

drop from 1275OF to l l O O o  F over a distance of 7.1 inches. This characteristic demands 

that the condensing and subcooling lengths be accurately predicted for proper cycle 

operation. 

The subcooled liquid enters the exit headers and return feed lines to the jet pump. No 

heat is assumed to be rejected over this portion of the loop. Examination of Figure 3-11 

shows that the pressure at the EM pump has been kept conservatively high to insure 

against cavitation. 
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The rapid subcooling which occurs in the radiator tubes can produce disastrous results 

when flow maldistribution is present. Severe maldistribution can change the axial 

temperature drop from tube-to-tube to the extent where radiator buckling is caused by 

the induced thermal stresses. Direct condensing radiator tests using potassium, 

conducted at Oak Ridge National Laboratory by A. P. Fraas (Reference 3-9), exhibited 

maldistribution due to "sonic velocities in the vapor manifold. '' The fluid velocities in 

the vapor header for the condensing radiators presented here are limited to one-half the 

vapor velocity at the tube inlet; this gives the header the same characteristics as a 

plenum. This design criteria is w e d  for both the indirect and direct condensing radiator 

parametric studies. The header vapor velocity for 'the eight-panel condensing radiator 

design is 252 ft/sec. The equilibrium sonic velocity for saturated potassium at 1340'F 

is given by W. D. Weatherford Jr. (Reference 3-10) as 1443 ft/sec. Therefore, flow 

maldistribution would not be expected to occur in the eight-panel condensing design radiator 

or in  any of the other radiators designed in this study, 

3.4 WEIGHT COMPARISON 

The direct condensing radiatbr has a weight advantage over the indirect condensing sys- 

tem for all conditions considered in this study. 

survival probabilities of 0.9,  0.99, and 0.999. 

Figure 3-12 compares the weights for 

The weight additions to the indirect 

system for pumps, pump power penalty, and condenser are essentially constant over the 

range of probabilities. 

the direct condensing radiator weight increases by 140 percent as probability in- 

creases from 0.9 to 0.999, the indirect system radiator weight increases by only 42 

percent. This difference in sensitivity can be attributed to the ability of the indirect 

system radiator to take advantage of the effects of redundancy. The trend indicated 

in Figure 3-12 suggests that at nonpenetration probabilities above 0.999 and/or life- 

times greater than five years, the weight advantage of the direct condensing radiator 

continues to diminish and at some point the indirect system becomes lighter. 

The most significant effect is in the radiator weight. Whereas 

Although the effect of power level was  not a part of this study, some inferences can 

be drawn from the data presented. A s  discussed earlier, the indirect system radiator, 
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5 
being significantly larger in area, is more sensitive to the envelope limitations of the 

launch vehicle. This sensitivity is magnified when the indirect system employs re- 

dundant loops. A secondary effect of the larger area is an increase in feed line length. 

Hence, the feed line weight for the indirect system radiator is 21 percent of the total 

radiator weight. The direct condensing radiator has shorter feed lines and gains from 

the very low mass flow rate of the coolant. As a result, the feed line weight for the 

direct condensing radiator is only 5 . 5  percent of the total radiator weight. A s  the power 

level of the system increases, the influence of the feed lines increases. For example, in 

Reference 3-1 the following was noted: 

Power level (kWe) 3 00 1200 

Feed line weight (lb) 25 1 1354 

Feed line pump penalty weight (lb) 289 3066 

That is, for a power level increase by a factor of four, the feed line weight and pump 

power penalty attributable to the feed lines, increase by a factor of eight. 

Hence, the area limitation effects and feed line weights indicate that the direct radiator 

will increase its weight adviintage at  increasing power levels. However, a compensating 

factor favors the indirect system. Increased power level has approximately the same 

effect on armor thickness as increased survival time. Figure 3-12 indicates that a more 

severe meteoroid protection criteria would favor the indirect system. However , this 

effect is not likely to offset the factors favoring the direct condensing radiator. 

Load-bearing radiator concepts were chosen for all the radiators consides.ed in this 

study because of the advantages shown in the comparison reported in Reference 3-1. 

A s  a result, structural weight is not an important factor in the comparison between 

indirect and direct condensing systems. Had non-load-bearing concepts been considered, 

the structural weight differences would have been a major factor. None of the radiators 

considered has a specific weight of tubes and fins less than 1 . 2  lb/ft2. In  Reference 3-11 

it was shown that beryllium radiators of this density in a conical configuration have more 

than adequate structural capability to withstand the most severe launch loads of the 

Saturn V launch vehicle. Parasitic structural weight, which includes the weight of 

I 
I 
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1 
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brackets, insulation, fasteners, coatings, and so on, accounts for a small percentage 

of the total radiator weight, but it is not enough to influence the choice of radiator type. 

Since significant differences for the various 

fied, the parasitic structural weight has not 

listed. 

3.5 REFERENCES 

3- 1 

3-2 

3-3 

3-4 

3-5 

3-6 

3-7 

3-8 

3-9 

3-10 

radiators being compared cannot be identi- 

been included in the total system weights 

Cockfield, R. D. , "Comparison of Load Bearing and Non-Load Bearing Radiators 

for Nuclear Rankine Systems,1f NASA CR-72307, May 6, 1967. 

Larson, J. W. , "Research on Spacecraft and Powerplant Integration Problems, 

Second Quarterly Iieport, GE Document No. 83SD886, October, 1963. 

Lieblein, S., Introduction to Radiator and Condenser Session of AIAA Specialist 

Conference on Rankine Space Power Systems, CONF-651026, October, 1965. 

Tepper, F. , King, J. , and Greer, J. , "Multicomponent Alkali Metal Alloys, 

MSA Technical Report AFAPL-TR-65-73, July, 1965. 

"Low Melting NaK-Cesium Alloys, 7 t  MSA Report 62-106, September, 1962. 

Lalli, V. R. , "Pyrotechnics for Efficient Preheating of Space Power Systems, 

Space/Aeronautics, November, 1965. 

Tharpe, B. J. , "Study on Application of Nuclear Electrical Power to Manned 

Orbiting Space Station, ?'  NASA CR-54160, September, 1964. 

Rhudy, R. G. and Verkamp, J. P., "Electromagnetic Alkali Metal Pump Re- 

search Program, If  NASA CR-380, February, 1966. 

Fraas, A. P., Wesign and Development Tests on Direct Condensing Potassium 

Radiators, IT AIAA Specialists Conference on Rankine Space Power Systems, 

October, 1964. 

Weatherford, W. D., Jr., Tyler, J. C., and Ku, P. M. , "Properties of Inor- 

ganic Energy- Conversion and Heat-Transfer Fluids for Space Applications, I )  

WADD Technical Report 61-96, November, 1961. 

3-29 



3-30 

3-11 Cockfield, R. D., "Definition of Spacecraft and Radiator Interrelations for 

Nuclear Rankine Systems, NASA CR-72245, January 26, 1967. 



4. CONCLUSIONS 

The comparison made in this study is for load-bearing, beryllium radiators, applicable 

to a nuclear potassium Rankine system for an unmanned interplanetary probe mission, 

launched by a three-stage Saturn V. The power level is assumed to be 2.46 M W  heat 

rejected, approximately equivalent to 300 k\Ye net electrical power. Meteoroid 

nonpenetration probabilities of 0 . 9 ,  0.99, and 0.99 for a five year life are considered. 

Among the conclusions reached in this study are the following: 

t 

a. 

b. 

C. 

d. 

e. 

f. 

g. 

The direct condensing radiator has a significant weight advantage over the indirect 
condensing system for all conditions considered in this study. Extrapolation to 
more severe meteoroid protection requirements may favor the indirect system. 
Consideration of startup requirements, however, strongly favor the indirect system 
and may offset the appanxt weight advantage of the direct condensing radiator. 

The use of redundant loops in the indirect system provides a means of reducing 
overall radiator weight at the higher survival probabilities. 

The indirect system radiator is considerably larger in area than the direct condens- 
ing radiator and is therefore sensitive to launch vehicle area limitations. This 
sensitivity is inqreased when panel redundancy is employed. 

The weight advantage of the direct condensing radiator is accompanied by an increase 
in system reliability due to the elimination of pumps. 

For the conditions considered in this study, where load-bearing radiators are em- 
ployed, structural considerations do not influence the comparison between direct 
condensing and indirect systems. 

Design of the direct condensing radiator is more critical due to the importance of 
avoiding two-phase flow instabilities and maldistribution. 

Operation of the direct condensing radiator is sensitive to internal and external dis- 
turbances and adverse accelerations. For some missions, consideration of accel- 
erations may influence the choice of flow direction through the tubes. The resulting 
adverse thermal 
expansion joint. 

gradient from one bay to the next implies a weight penalty for an 
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a 
h. Although the effect of power level was not investigated, it would appear that the 

direct condensing radiator would retain its weight advantage over a wide range of 
power levels, if startup problems were ignored. The startup problems associated 
with the direct condensing radiator would be intensified at higher power levels. 

i. The Spartan V computer code developed for  the design of direct condensing radiators 
shows excellent agreement with the test data available for potassium. 
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5. NOMENCLATURE 

area 

constant used in Blasius equation 

correction factor to Nusselt's relation 

diameter 

recommended stable diameter 

energy 

kinetic energy 

length 

molecular weight 

Reynolds number 

pressure 

potential energy 

frictional pressure drop 

momentum pressure drop 

two-phase pressure drop 

heat transfer rate 

universal gas constant 

temperature 

temperature drop 

velocity 

flow rate 

square root of the ratio of the liquid pressure drop to gas pressure drop assuming 
each phase to flow separately 
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f 

g 

gC 

h 

h 

h 

k 

m 

C - 
C 

n 

V 

V 
0 

W 

X 

friction factor as defined by the Blasius expression 

acceleration 

g r avi t ati on al c ons t an t 

heat transfer coefficient 

condensing heat transfer coefficient 

average condensing heat transfer from flub inlet to p a a t  of complete condensation 

thermal conductivity 

exponent of Reynold's number in Blasius expression for friction factor for gas 
phase 

exponent of Reynold's number in Blasius expression for friction factor for  liquid 
phase 

velocity 

inlet vapor velocity 

flow rate 

length 

G R E E K  L E T T E R S  

absorptivity 

condensate film thickness 

emissivity 

wave amplitude 

maximum wave amplitude 

ratio of gas Reynolds to gas Weber number 

wavelength 

viscosity 

kinematic viscosity 
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P = density 

U = surface tension 

= condensation coefficient, fraction of the molecules striking the surface which 
actually condense OC 

= evaporation coefficient, fraction of the predicted molecular flux from the liquid 
surface which actually leaves the surface ue 

= function of X used in calculating two-phase pressure drop 
'PV 

SUBSCRIPTS 

C = critical 

exP = experimental 

f = condensate film o r  frictional 

1 = liquid phase 

V = vaporphase 
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